5G 时代高铁覆盖解决方案研究

Research on High Speed Railway Coverage Solutions in 5G Era

林铁力(中国联通广东省分公司,广东广州 528000)

Lin Tieli (China Unicom Guangdong Branch, Guangzhou 528000, China)

针对5G高铁覆盖面临诸多困境,从5G网络高频段、高功耗、高传输带宽需求、 多普勒频偏、频繁切换、穿透损耗大等方面进行了分析。针对高铁场景特征及 业务体验需求,研究并提出5G高铁覆盖解决方案和规划设计方法,为运营商在 高铁场景快速部署5G网络提供技术支撑。

关键词:

5G;多普勒频偏;切换;穿透损耗;规划 doi: 10.12045/j.issn.1007-3043.2020.10.012 文章编号:1007-3043(2020)10-0057-06 中图分类号:TN929.5

文献标识码:A

开放科学(资源服务)标识码(OSID):

Abstract:

Aiming at the difficulties faced by high-speed railway 5G coverage, it analyzes the high-frequency band, high power consumption, high transmission bandwidth requirements, Doppler frequency offset, frequent switching, and high penetration loss of 5G coverage in 5G network. According to the characteristics of high-speed railway scenarios and the needs of service experience, 5G high-speed railway coverage solutions and planning and design methods are studied and proposed to provide technical support for operators to rapidly deploy 5G network in high-speed rail scenarios.

Keywords:

5G; Doppler shift; Handover; Penetration loss; Planning

引用格式: 林铁力. 5G时代高铁覆盖解决方案研究[J]. 邮电设计技术, 2020(10): 57-62.

1 概述

我国高铁里程2025年预计将达3.8万km,累计发 送旅客人数已超70亿人次。在4G时代,各大运营商 针对高铁覆盖属于品牌场景网络建设的重中之重。 随着高铁用户规模增长及多样化的业务感知要求,在 5G 大规模建设和应用中,对5G 高铁覆盖解决方案的 需求是非常迫切的。5G高铁覆盖方案将面临诸多困 境,如5G网络高频段、高功耗、高传输带宽需求、多普 勒频偏、频繁切换、穿透损耗大等。本文针对高铁多 种场景,研究并提出对高铁的5G覆盖解决方案和规划

收稿日期:2020-08-26

设计方法,指导快速推进5G时代的高铁覆盖及精品高 铁网络建设。

2 5G高铁覆盖重要性及技术难点

2.1 5G 高铁覆盖的重要性

高铁建设全面铺开,快速化、信息化已成为趋势: 中国高铁里程占全球60%,成为中国人出行第一选择, 年增长率超35%。在高铁信息化及高铁用户快速增长 的趋势下,5G时代运营商需要针对高铁覆盖拟定针对 性的方案,在网络覆盖及用户体验上形成优势。

高铁乘客特征和运营商价值客户高度重合,高铁 是运营商的网络品牌的重要展示窗口:高铁运输能力 大,单车容纳能力高,目环境舒适,用户业务使用比例 高,整体业务需求较其他场景大;高铁用户中商务人 士乘坐比例高,高端客户占比大,对于提升网络品牌 县有重要意义,是5G时代网络建设的重点。

2.2 5G 高铁覆盖技术难点

高铁普遍存在的三大挑战:多普勒频偏、频繁切换、穿透损耗大。由于5G主流的3.5 GHz频段频率高于4G,5G时代高铁覆盖更加困难,5G网络覆盖解决方案需要重点关注站点规划与布局、系统切换重叠区域设计、频率纠偏等方面,实现更好的网络性能。

2.2.1 多普勒频偏影响接收机解调性能

5G系统支持大于500 km/h 的移动性,高速移动下的多普勒频偏(接收信号频率会偏离基站侧中心频点)会影响接收机解调性能,多普勒频偏对5G网络影响更大,3.5 GHz相对1.8 GHz频偏增大1倍,在3.5 GHz情况下,列车速度达到350 km/h时,上行多普勒频偏将大于2.2 kHz(见表1),因此,在高频段、终端高速移动状态下如何克服多普勒频偏是5G网络关键技术难点之一。多普勒效解决方案主要通过基站设备纠偏算法,进行用户的频率纠正来消除多普勒频偏移带

表1 不同频段的上行最大多普勒频偏

速度/	1 800 MH	z(15 kHz)	3 500 MH	z(30 kHz)	4 900 MHz(30 kHz)		
(km/h)	频偏/Hz	百分比/%	频偏/Hz	百分比/%	频偏/Hz	百分比/%	
200	667	4.4	1 286	4.3	1 816	6.1	
250	833	5.6	1 619	5.4	2 267	7.6	
300	1 000	6.7	1 929	6.4	2 722	9.1	
350	1 167	7.8	2 269	7.6	3 176	10.6	
450	1 500	10.0	2 894	9.6	4 083	13.6	

来影响。

2.2.2 超高速移动导致切换区不足及频繁切换问题

5G无线通信系统的系统可靠性需求为99.999%,端到端时延<1 ms,在列车时速350 km/h,切换区域超过90 m时,高速移动时所需要的重叠覆盖距离明显高于普通场景,且由于5G站距相对更小,频繁切换问题明显。高铁列车速度350 km/h,在站距500 m情况下,平均3 s切换一次,终端用户在小区频繁切换,切换时带来的吞吐率体验下降明显,甚至掉话增加(如图1所示)。

频繁的小区切换将极大降低用户的感知,成为5G

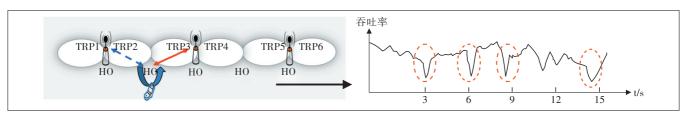


图1 高铁小区切换示意

网络关键技术难点之一。需要合理的无线网络规划和参数设置,实现更快的小区重选和合理的小区重叠区,满足小区间切换要求,同时通过小区合并可减少小区间切换次数,提高网络速率及可靠性。

2.2.3 5G高频段的车体穿透损耗更大

5G 无线通信系统的目前使用频段为 3.5 GHz,自由空间损耗及车厢损耗较 1.8 GHz 频段高,其中自由空间传播损耗高 6 dB,车体传播损耗高 3~5 dB。CRH380A车厢整体穿透损耗平均值约为 20 dB,3.5 GHz 频段穿透损耗更高约为 25 dB,不同车型采用材质不同,穿透损耗差异也很大(见表 2),且基站到高铁的入射角越小,损耗越大,因此,在网络规划设计时入射角应控制在 10°以上,基站到高铁最小距离为80~200 m。

3 高铁多场景覆盖规划方案

3.1 规划目标建议

表2 不同列车不同频段的穿透损耗(dB)

车型	年份	LTE 1.8 GHz	3.5 GHz	4.9 GHz
CRH 380A	2011	20	25	28
CRH 380B	2012	29	34	37
复兴号400AF	2017	34	39	42

目前阶段高铁业务主要以视频、游戏、社交、办公 类等eMBB业务为主。根据4G高铁数据统计,高铁业 务模型与大网eMBB类似,文字、图片带宽需求变化不 大,视频业务占比56%左右,未来业务较长时间内仍 以"高清视频"为主,带动流量增长。

5G 初期,eMBB业务以 2K 视频+智能手机、4K 视频+HDTV/VR 为主(见表3);其中 2K 视频是 5G 业务最小业务要求,高铁用户大部分时间处于 200~350 km/h高速运行,边缘速率规划建议按照 4K 视频业务需求:下行速率要求>50 Mbit/s,上行速率可根据不同覆盖目标要求确定,初期建议 UL>1 Mbit/s,后续再分阶段考

表3	eMBB业务带宽需求	÷

参数	智能手机/PAD		VR终端		说明
多奴	2K 2D	2K 3D	4K 2D	4K 3D	
像素分辨率	2 560	-	3 840	3 840	2K 屏有多种规格,选取
	1 440	-	1 920	1 920	相对普遍的 2 560×1 440
色深编码/bit	10	-	12	12	
帧率/fps	30	-	30	30	
压缩率	165	-	165	165	不同压缩率对带宽影响较大,取经验值165(基于H.265)
2D or 3D	1	-	1	2	
平均码率/ (Mbit/s)	6.7	-	16.1	32.2	理论的理想平均码率
带宽需求/ (Mbit/s)	10.1	-	24.1	48.3	由于网络传输速率的波动,实际带宽需求取值 为平均码率的1.5倍

虑>5 Mbit/s,满足1080P视频上传要求。

高铁场景边缘速率规划建议:DL 50 Mbit/s,UL 1、 5 Mbit/s_o

3.2 链路预算分析

合理的站址规划是网络质量基石,在网络规划选 址时既要充分考虑利用现有资源,也要考虑站址规划 的合理性。目前国内 5G 频谱资源为 3 500~3 600 MHz,根据评估,3.5 GHz频段的总损耗比1.8 GHz频段 约大14dB,主要表现在空间损耗、车厢穿透损耗及间 隙发射带来损耗。基于目标边缘吞吐率的小区半径 链路预算分析如表4所示,从表4可以看出,5G站址规 划站距势必比4G网络更密。

从基于目标边缘吞吐量的小区半径链路预算分 析, Cost-Hata模型与3GPP模型测算站距差异较大,按 目前广东联通高铁4G现有存量站址站距600~800 m, 至少需增加1倍以上站址方可满足5G网络覆盖要求, 这对运营商来说是一项艰巨的任务,主要表现在站址 选取、物业协调、工程建设、投资成本以及管道传输资 源等方面。如何克服高频段损耗站点过密问题、降低 建设成本,成为重中之重。

NR下行可以和LTE现网1:1共站,通过上下行解 耦、DC双连接提升上行覆盖:从链路预算及速率满足 情况来看,5G高铁覆盖主要表现为上行受限,小区边 缘速率超过50 Mbit/s,可以实现和4G现网站点1:1共 站。从上行边缘速率情况来看,5G相对LTE FDD存在 上行覆盖受限,需要上下行解耦或DC双连接提升上 行覆盖,解耦后上行速率提升明显。小区实际覆盖半 径可根据具体站点规划情况确定,在1:1基础上,进行 个别站点补充满足规划目标。

图2给出了边缘吞吐率与小区半径的关系示意。

3.3 切换区域设计

由于5G无线通信系统的可靠性可达99.999%,端 到端时延<1 ms,在列车时速达350 km/h,双向切换区 域范围较大。终端用户频繁切换,将导致吞吐率下降 明显,甚至掉话增加,因此,减少小区间切换是提升高 铁用户体验的关键。

5G系统需要的切换重叠区域测算如图3所示,其 中过渡区为信号到满足切换电平迟滞(~2 dB)需要的 距离,并且考虑防止信号波动需重新测量而影响切换 的距离余量;切换区域:时延1为终端测量上报周期+ 切换时间迟滞,时延2为切换执行时延,包括信令面及 数据面执行时延。

合理的重叠覆盖区域规划是实现业务连续的基 础,重叠覆盖区域过小会导致切换失败,过大会导致 干扰增加,影响用户业务感知,实际规划中,根据网络 参数配置及时延要求评估,进行合理的切换区域设 计。考虑单次切换时,重叠距离=2×(电平迟滞对应 距离+切换触发时间对应距离+切换执行距离)。

以常用配置(切换测量及判决 160 ms、切换执行 20 ms)为例,不同列车速度对应的重叠距离需求如表 5 所示,5G 网络的小区间重叠覆盖距离150 m,可以满 足小区间切换重叠覆盖区要求。

小区合并应用建议:根据4G网络经验,综合考虑 大网用户的容量和性能,合理选择RRU共小区方案, 是减少频繁切换、提高用户感知的有效方案。5G网络 中也需要继续采用RRU合并解决切换问题,5G采用 Hyper Cell(相同逻辑小区)技术小区合并后,广播信道 共小区,形成一个逻辑小区,其业务信道TRP可独立 调度,容量无损,从而有效保障用户感知。

Hyper Cell:基站侧基于上行信号判断切换,用户 在同一个逻辑小区内移动时感知不到TRP变更。

3.4 高铁线路覆盖方案

线路站址规划:高铁线路覆盖站址建议以"之"字 形布站,以最大限度保证列车两边座位都有比较好的 覆盖,尤其是在列车会车的时候能保证车内通信质量 最佳。

站轨距:据无线信号传播特点,信号入射角越小, 穿损越大,通常建议入射角大于10°,考虑到天线水平 波瓣在90°方向增益约为0dBi,为保证不出现塔下黑, 根据链路预算,建议站点离铁轨距离不超过200 m。

A .W	密集	市区	普通	市区	郊	区	农	村
参数	上行	下行	上行	下行	上行	下行	上行	下行
系统带宽/MHz	100	100	100	100	100	100	100	100
总 RB 数/载波数	272	272	272	272	272	272	272	272
RB带宽/载波带宽/kHz	360	360	360	360	360	360	360	360
上行与下行配比	1	4	1	4	1	4	1	4
基站天线增益/dB	11	11	11	11	11	11	11	11
发射天线数	2	32	2	32	2	32	2	32
接收天线数	32	4	32	4	32	4	32	4
边缘速率	1	20	1	20	1	20	1	20
最大发射功率/dBm	26	53	26	53	26	53	26	53
发射天线增益/dBi	0	11	0	11	0	11	0	11
EIRP/dBm	26	63.9	26	63.9	26	63.9	26	63.9
单用户分配RB数/载波数	40	272.0	40	272.0	40	272.0	40	272.0
接收机噪声系数/dB	3.5	7	3.5	7	3.5	7	3.5	7
热噪声/dBm	-102.4	-94.1	-102.4	-94.1	-102.4	-94.1	-102.4	-94.1
接收基底噪声/dBm	-98.9	-87.1	-98.9	-87.1	-98.9	-87.1	-98.9	-87.1
SINR/dB	-2.2	-5.5	-2.2	-5.5	-2.2	-5.5	-2.2	-5.5
接收机灵敏度/dBm	-101.1	-92.6	-101.1	-92.6	-101.1	-92.6	-101.1	-92.6
接收天线增益/dBi	11	0	11	0	11	0	11	0
干扰余量/dB	3	5	3	5	3	5	3	5
馈线损耗/dB	0	0	0	0	0	0	0	0
塔放增益/dB	0	0	0	0	0	0	0	0
阴影衰落/dB	8.65	8.65	8.65	8.65	5.85	5.85	5.85	5.85
穿透损耗/dB	36	36	36	36	36	36	36	36
人体损耗/dB	0	0	0	0	0	0	0	0
分集增益/波東赋形增益/dB	14	17	14	17	14	17	14	17
切换增益/dB	0	0	0	0	0	0	0	0
最大路径损耗/dB	104.4	123.8	104.4	123.8	107.2	126.6	107.2	126.6
频率/MHz	3 550	3 550	3 550	3 550	3 550	3 550	3 550	3 550
基站天线挂高/m	30	30	30	30	30	30	30	30
用户终端高度/m	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
街道宽度(W)/m	10	10	20	20	20	20	20	20
楼宇平均高度(h)/m	30	30	25	25	20	20	5	5
覆盖半径(Cost-Hata)/m	53	196	65	239	78	287	78	287
覆盖半径(3GPP模型)/m	83	275	110	358	149	480	225	718
站间距(Cost-Hata)/m	8	0	9	8	1	17	1	17
站间距(3GPP模型)/m	12	24	10	65	22	23	3:	37

表4 基于目标边缘吞吐量的小区半径链路预算(2.5 ms 单周期)

站高:站高设计需保证信号直射径能从列车玻璃穿透,减少信号从车顶穿透几率,天线相对铁轨高度在20~45 m为宜;方位角:不同入射角对应的穿透损耗不同,入射角越小,穿透损耗大。实际测试表明,当入射角小于10°以后,穿透损耗增加的斜率变大,因此方位角设置中应保证天线与铁路夹角大于10°;下倾角:5G高铁场景天线下倾设置原则,天线垂直波束最大增

益方向指向边缘。

入射角与基站离铁轨的距离关系示意如图 4 所示。

建议相对站高在20~45 m,站点离铁轨距离在35~120 m,保证列车两边座位都有比较好的覆盖。

高铁线路覆盖设备选型建议:高铁场景中2T/4T 无法满足一般站间距规划,8T可满足500~650 m站间

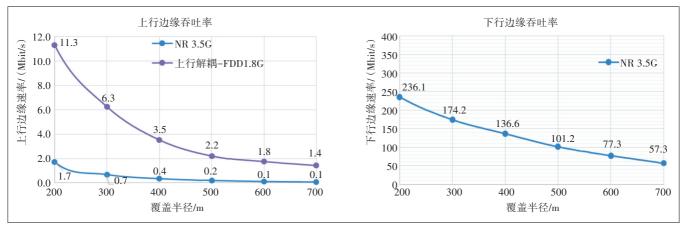


图2 边缘吞吐率与小区半径的关系

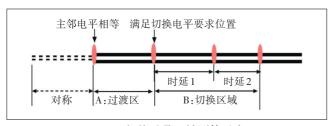


图3 切换重叠区域测算示意

表5 不同列车速度对应的重叠距离需求

速度/(km/h)	过渡区A/m	切换区 B/m	切换重叠需求距离/m
200	50	10	120
250	50	12	124
300	50	14	128
350	50	17	134


距覆盖,32T/64T可满足相对较大覆盖距离(见表6)。 32T/64T理论上覆盖好于8T,容量高于8T,但小区合 并、波束赋形算法难度更大、要求高,需要根据高铁线 路场景及业务情况,并综合考虑成本、技术成熟度,确 定建设方案,从目前厂家设备情况来看,8T方案的成 熟度最高。

表6 不同类型设备覆盖对比

小区边缘速率/	站	距 500	m	站	距 650	m	000 m	
(Mbit/s)	8T	16T	32T	8T	16T	32T	8/16T	32T
下行 (50%RB)	13	17	32	8	13	25	NA	10

3.5 高铁隧道覆盖方案

高铁隧道由于隧道空间狭小,列车速度快,从生 产风压及安全性考虑,无法采用常规天线覆盖,建议

信号入射角	基站离铁轨距离/m	相对站高/m
	100	22
10°	150	34
	200	45
	200	45

图4 入射角与基站离铁轨的距离关系示意

隧道内采用泄露电缆进行覆盖(见图5),两侧洞口采 用定向天线朝外延伸,增大隧道外宏站与隧道区域的 重叠覆盖带区域,保证切换的顺利完成。

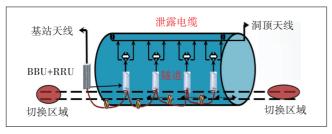


图5 高铁隧道覆盖示意

表7给出了覆盖方案的对比。

漏缆及POI情况分析及建议:存量13/8漏缆规格 无法支持3.5 GHz,最大截止频率为2.9 GHz,无法满足

表7 覆盖方案对比

- Example 2007							
5G高铁覆盖方案	方案对比						
3.5 GHz RRU+定向 天线	直线传播,对于弯曲的隧道场景效果相对较差; 需要新部署定向天线,高铁隧道外露天线安全 性、协调困难						
3.5 GHz RRU+利旧 现有泄露电缆	泄露电缆适用多种隧道场景;存量泄露电缆不支持3.5 GHz或损耗大,难以满足覆盖要求						
3.5 GHz RRU+新建 3.5 GHz泄露电缆	泄露电缆适用多种隧道场景;需要新建3.5 GHz 漏缆						

5G演进,采用5/4漏缆可支持3.5 GHz,优选2T2R漏缆方案。3.5 GHz漏缆的2种部署方案,建议采用漏缆替换方案。

- a) 800 MHz~3.6 GHz全带漏缆替换存量漏缆:无额外安装空间要求,对 sub3G KPI存在恶化风险。
- b) 新增3.5 GHz only 窄带漏缆:指标更好,不影响 sub3G KPI,但有额外安装空间要求,安装位置导致穿 损更大。

存量 POI 无法支持 3.5 GHz,也只支持 2.6 GHz 频 段 60 MHz, NR3.5 GHz 需新增或替换 POI,建议隧道组 网使用 POI+漏缆,3 家运营商共建共享,降低建设难度 及成本。

3.6 高铁站厅覆盖方案

高铁站枢纽主要功能区包含站厅、站台、出入口等,场景空旷,但容量密度高,站厅、站台小区间干扰控制存在困难。从用户分布特点来看,高铁站大厅用户密度大,高铁运行时间段内人流巨大,且用户流动性强,大量用户随列车运行移动。从业务特征来看,高铁站厅是典型高流量区域,用户数密集、业务高热。

根据高铁站厅的场景特征,建议使用数字化室设备分进行覆盖,可选择新增3G/4G/5G多模数字化室分模块,或在现有传统DSA系统基础上,新增5G数字化室分模块混合部署(见图6)。

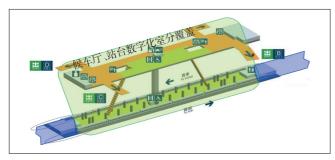


图6 高铁站厅覆盖示意

站厅使用数字化室分设备具备如下优势。

- a) 高性能,提升用户体验,pRRU一根缆支持4×4MIMO,提升吞吐率与小区容量。
- b) 光纤+网线,缩短施工周期;端到端可维可控, 与宏站共网管,降低维护成本。
- c) 支持软件扩容,无需硬件改造小区灵活劈裂, 应对话务持续增长,保障用户体验。

4 高铁覆盖解决方案建议

根据5G小区半径及链路预算分析,按目前广东联

通高铁4G现有存量站址规模,至少需增加1倍站址才可满足5G网络覆盖要求,这对运营商来说是一项艰巨的任务,且建网成本无法承受。本文研究克服高频段损耗站点过密问题的方案,建议NR下行可以和LTE现网1:1共站,通过上下行解耦、DC双连接提升上行覆盖,在1:1基础上根据规划评估进行部分区域按需补充站点,满足规划目标。

高铁场景终端用户在小区频繁切换,切换时带来的吞吐率体验下降明显,减少小区间切换是提升高铁用户体验感知的关键。建议进行合理的重叠覆盖区域规划,并采用RRU合并解决切换问题,有效保障用户感知。

高铁完整覆盖解决方案包括线路、隧道、站厅,其中高铁线路覆盖站址建议以"之"字形布站,建议入射角大于10°,站点离铁轨距离不超过200 m,天线相对铁轨高度在20~45 m为宜,根据站轨距、高度、入射角规划设计合理的方位角及下倾角,保障覆盖效果。

建议隧道内采用泄露电缆进行覆盖,两侧洞口采用定向天线朝外延伸,增大隧道外宏站与隧道区域的重叠覆盖带区域,保证切换的顺利完成,详细评估当前 POI、漏缆演进到 5G 条件限制,建议隧道组网使用 POI+漏缆,3 家运营商共建共享,降低建设难度及成本。

高铁站厅建议使用数字化室设备分进行覆盖,可选择新增3G/4G/5G多模数字化室分模块,或在现有传统DSA系统基础上,新增5G数字化室分模块混合部署。使用数据化室分设具备易部署、易维护、平滑扩容等优势。

参考文献:

- [1] VINCENT W S W, SCHOBER R, DERRICH W K N, et al. 5G 系统 关键技术详解[M]. 北京:人民邮电出版社,2018.
- [2] OSSEIRAN A, MONSERRAT J F, MARSCH P. 5G 移动无线通信技术[M]. 北京:人民邮电出版社, 2017.
- [3] 杨峰义,张建敏,王海宁,等.5G网络架构[M].北京:电子工业出版社,2017.

作者简介:

林铁力,工程师,学士,主要从事无线通信网的规划建

