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0 引言

深度学习是机器学习的重要分支，通过构建多层

神经网络，使机器能够模拟人类处理多种类型数据的

能力，完成认知层面的复杂任务［1-2］。目前，深度学习

已成为人工智能领域的研究重点和主流方向，被广泛

应用于计算机视觉、自然语言处理等多个领域。然而，

随着模型规模、数据量的增长及任务要求的多元化，大

规模神经网络模型的训练面临着新的挑战［3］。例如，

AmoebaNet［4］、NASNet［5］、GPT-3［6］等模型因其参数量庞

大，传统的集中式训练难以满足其实时性需求。

在图像识别领域，深度学习模型的训练方法主要

有 2种。一是将深度学习模型部署在云端数据中心，

移动设备将收集的图像数据上传至云端，由云端完成

模型的训练，实现图像识别。二是利用边缘计算技

术，将用于图像识别的深度学习模型部署在多接入边

缘计算（MEC）节点，由MEC节点负责模型的训练。

然而，第 1种方法存在数据传输时延大的问题，大

量图像数据经广域网传至远端云数据中心，使深度学

习模型训练耗时多。第 2种方法虽能减少图像数据从
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摘 要：
针对移动场景下深度学习模型训练加速问题，首次提出高速移动场景下模型训

练4种处理流程，设计端—边—云协同的深度学习模型训练加速方案。搭建模

型训练时延优化模型，将训练加速问题转化为多目标受限条件下时延最优解问

题。基于麻雀觅食与反捕食行为的启发式优化算法，选择最优模型训练卸载策

略，为用户提供训练服务并给出最优卸载量。实验表明，端—边—云协同的训

练加速方案可降低模型训练时延。
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To address the issue of accelerating deep learning model training in mobile scenarios，it proposes four processing flows for
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results demonstrate that the end-edge-cloud collaboration training acceleration scheme can significantly reduce model

training latency.
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移动设备传至MEC节点的时延，但MEC节点计算与

存储能力有限，训练高精度深度学习模型性能不佳。

此外，因MEC节点覆盖范围有限，移动场景下模型训

练需考虑任务迁移问题。因此，协同MEC节点及移动

设备资源进行任务最优卸载处理成为关注焦点，目前

主要有以下2种方法。

a）基于能耗敏感的任务最优卸载方案。该方案

以降低能耗为目标，选择最优的MEC节点进行任务卸

载［7-9］，如文献［7］提出基于 Lyapunov优化的在线能耗

优化算法，可满足动态任务下的能耗最优。

b）基于时延敏感的任务最优卸载方法。该方法

旨在最小化用户任务处理的时延［10-12］。文献［10］提出

启发式算法来求解混合整数线性规划（MILP）模型；而

在文献［11］提出迭代算法，将问题分成 3个子问题，以

交替优化方法结合内凸逼近框架的方式解决该问题，

从而降低时延。

此外，智能手机、无人机等移动端设备受其能量

供给的限制，在进行深度学习模型训练时，能耗也是

关键的考虑因素。为解决深度学习模型训练方法的

问题，本文结合边缘计算技术与云计算技术，构建移

动场景下端—边—云协同的深度学习模型训练加速

系统架构。通过引入模型分割技术［13］，将端—边—云

协同训练建模为在终端能耗、训练时延受限条件下，

基于训练时延最小的任务最优卸载问题，实现训练加

速。本文的主要贡献有以下3点。

a）首次分4类场景提出高速移动场景下深度学习

模型训练的业务流程，在终端能耗、模型训练时延受

限的情况下，综合考虑通信、计算等因素，联合优化任

务卸载和任务迁移，设计基于时延最优的深度学习模

型训练加速方案，并给出了最优的模型分割的切割

点，实现模型训练加速。

b）设计了麻雀优化算法，解决了受限条件下最优

解的问题。

c）对模型进行了实验，结果显示在资源受限情况

下，本文设计的基于端—边—云协同模型训练时延优

化方案相比端—云协同方案、端—边协同方案及端—

边—云随机方案，模型训练时延分别降低 45%、20%和

50%以上。

1 组网架构及业务流程

深度学习模型（如卷积神经网络）由多个神经网

络层（卷积层、池化层、全连接层等）叠加而成。因资

源有限的设备难以直接训练复杂参数的神经网络，且

不同神经网络层的计算资源需求和输出数据量差异

显著，所以可根据设备计算能力和网络带宽分割整个

深度学习模型。让设备仅处理从第 1层开始的连续网

络层计算任务，以提高资源利用效率。基于此，可将

模型训练切分为 3个部分，终端完成一部分任务，同时

利用MEC节点和云节点资源优势，将剩余 2个部分分

别卸载给它们进行训练。

移动场景端—边—云组网模式下模型训练架构

如图 1所示，假定 4组MEC服务器、1个云服器为移动

用户提供服务，移动用户利用采集的图像训练深度学

习模型进而实现图像识别。假定深度学习模型训练

任务量为W，因本地计算能力有限，将训练任务量W进

行切分，子任务将同时在本地终端设备、MEC或/和云

服务器上进行训练处理。

在移动通信中，若移动用户与MEC连接时长未达

到预设标准，即未完成任务就离开该MEC的覆盖范

围，为保证服务连续和数据完整，需将未完成的任务

数据从当前MEC节点（MECi，卸载MEC）迁移到下一

个可用MEC服务器继续处理，此过程称为“迁移”［14］，

执行迁移任务的MEC节点为MECj（迁移MEC）。根据

迁移时间不同，端—边—云架构下深度学习模型训练

处理流程分 4种场景（见图 2），场景 1是模型任务未卸

载完触发MEC切换，场景 2是模型任务未训练完触发

MEC切换，场景 3是训练完成的任务模型未回传完触

发MEC切换，场景 4是模型任务训练中未触发MEC切

换。其中，Xi是任务量W切分后计划卸载到MEC服务

器的训练任务量，Xc是计划卸载到云服务器的训练任

务量，因Xc无迁移现象，故按Xi迁移情况划分为 4种场

景。图2中所有①a、①b步骤在时间上并行。

图 2（a）展示了场景 1中移动用户的行为及其与

MEC节点的交互。用户首先上传了训练任务量 B至

图1 端—边—云架构组网

User1 User2MEC2

MEC1 Cloud MEC3

MEC4 User3User4
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MECi。因用户的高速移动，其服务从 MECi转移至

MECj。此时，用户需将剩余任务量（Xi-B）上传至新服

务节点MECj，同时MECi将已接收的任务量 B迁移给

MECj继续训练。最终，训练结果由MECj回传给用户。

需强调的是，步骤③a和③b在此场景下是并行进行

的。场景 2如图 2（b）所示，用户上传训练任务量Xi并
在MECi完成C量的训练后，因移动至MECj服务区域，

MECi将剩余未完成的任务量（Xi-C）及其训练结果迁

移至MECj。此后，由MECj负责将训练结果回传给用

户。同样，此场景下的步骤③a和③b是并行的。图 2
（c）描述了场景 3的处理过程。在此场景中，用户完成

训练任务量Xi的上传，并在MECi完成训练后收到D量

的训练结果。但因用户移动至MECj服务区域，MECi
需将未回传的训练结果（Xi-D）迁移给MECj。最终，由

MECj负责将剩余训练结果回传给用户。图 2（d）描绘

了场景 4的情况，即在整个训练任务上传、训练及结果

回传过程中，未发生任何MEC节点间的切换。

2 基于“端—边—云”协同模型训练任务处理模

型

为了更有效地降低深度学习模型训练任务的时

间延迟，需考虑云节点、多接入边缘计算（MEC）节点

以及移动用户终端间的通信和计算资源的协同作用。

本章将依据训练任务处理流程，构建训练任务时延和

能耗的模型，以优化训练效率。

2.1 系统模型

2.1.1 训练任务时延

2.1.1.1 训练任务通信时延

基于上述业务流程，考虑到MEC节点可能会发生

迁移的情况，训练任务通信时延的计算过程如下。

移动用户与MECi之间任务传输所需的通信时延

T com
i ( )xi,T ct

i 的公式及说明参见文献［15］。

T com
i ( )xi,T ct

i =
ì
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ï
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ïïï
ï
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ï
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ï

T ct
i ，0 < T ct

i < T rv
i ( )xi

T rv
i ( )xi ，T rv

i ( )xi < T ct
i < [ ]T rv

i ( )xi + T pc
i ( )xi

T ct
i − T pc

i ( )xi , [ ]T rv
i ( )xi + T pc

i ( )xi < T ct
i < T total

i ( )xi
T rv
i ( )xi + T sd

i ( )xi , 其他

（1）
其中，xi 为深度学习模型切割后，用户计划卸载到

MECi的训练任务量；T ct
i 为移动用户与MECi的连接时

图2 端—边—云架构下深度学习模型训练处理流程
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间；T rv
i ( )xi 为训练任务量xi卸载到MECi的时间；T pc

i ( )xi
为MECi训练任务量 xi的时间；T sd

i ( )xi 为回传训练结果

的时间；T total
i ( )xi 为T rv

i ( )xi 、T pc
i ( )xi 、T sd

i ( )xi 之和。

移动用户与MECj之间任务传输所需的通信时延

T com
j ( )xi,T ct

i 的公式及说明参见文献［15］。
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（2）
其中，V u

Ri、V d
Ri分别为用户与MECi的上下行速率；V u

Rj、V d
Rj

分别为用户与MECj的上下行速率；ρxi为 xi训练结果。

移动用户与云节点之间任务传输所需通信时延

如式（3）所示。

T com
c ( )xc = xcV u

Rc

+ρxc
V d
Rc

（3）
其中，V u

Rc为移动用户与云节点的上行链路传输速率；

V d
Rc为移动用户与云节点的下行链路传输速率；xc为深

度学习模型切割后，移动用户计划卸载到云节点的训

练任务量；ρxc为模型在云节点训练结果大小。

2.1.1.2 任务训练时延

MECi训练时延如式（4）所示。

T comp
i ( )xi,T ct

i = ì
í
î

ï

ï

0，0 < T ct
i < T recv

i ( )xi
T proc
i ( )xi ，其他

（4）

其中，T recv
i ( )xi 为训练任务量 xi卸载到MECi的传输时

间，T recv
i ( )xi = xi

V u
Ri

，V uRi 为 MECi 上行链路传输速率；

T proc
i ( )xi 为 训 练 任 务 量 xi 在 MECi 的 训 练 时 间 ，

T proc
i ( )xi = xi

VCi
，VCi为MECi的训练速率。

MECj训练时延如式（5）所示。

T comp
j ( )xi,T ct

i =
ì

í

î

ïï

ïï

xi
VCj

，0 < T ct
i < T recv

i ( )xi
0，其他

（5）

其中，VCj为MECj的训练速率。

移动用户终端训练时延如式（6）所示。

T comp
l ( )xi,xc = ( )W − xi − xc

VCl
（6）

其中，W为训练任务总量，VCl为移动用户终端训练速

率。

云节点训练时延如式（7）所示。

T comp
c ( )xc = xc

VCc
（7）

其中，VCc为云节点训练速率。

2.1.1.3 训练任务迁移时延

由于移动用户与MEC i的连接时间 T ct
i 是随机的，

当连接时间不足以完成训练任务传输或者任务训练

时都会发生任务迁移，那么迁移时延可表示为式（8）。

T mig
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,

[ ]T recv
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i ( )xi < T ct
i < T total

i ( )xi
0, 其他

（8）

其中，Ri,j为MECi与MECj之间的传输速率；THO为移动

用户切换时延；T total
i ( )xi 为MECi训练任务量 xi所需时

间 ，T total
i ( )xi = T recv

i ( )xi + T proc
i ( )xi + T send

i ( )xi ；T send
i ( )xi

为训练结果 ρxi 从 MECi 传输到移动用户的时间，

T send
i ( )xi = ρxiV d

Ri

；ρxi为模型训练结果大小；V d
Ri为MECi下

行链路传输速率。

训练任务时延由上述通信时延、训练实验和迁移

时延计算获得，具体如式（9）所示。

T ( )xi,T ct
i ,xc =
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ï
ï

ï
ï

T1( )xi,T ct
i ,xc ，0 < T ct
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T3( )xi,T ct
i ,xc ，其他

（9）
其中，T1为 0 < T ct

i < T recv
i ( )xi 时的训练任务时延，T2

为 T recv
i ( )xi < T ct

i < [ ]T recv
i ( )xi + T proc

i ( )xi 时的训练任务

陈亦哲，姜肇瑞，冯传奋
移动场景下基于端—边—云的深度学习模型训练加速研究

数据通信
Data Commuincation

79



2025/12/DTPT

时延，T3为T ct
i > [ ]T recv

i ( )xi + T proc
i ( )xi 时的训练任务时

延。

具体地：

T1( )xi,T ct
i ,xc = max{[T com

i ( )xi,T ct
i + THO +

max é
ë
êê

ù

û
úú

V u
RiT ct

i

Ri,j
, xi − V u

RiT ct
i

V u
Rj

+ T comp
i ( )xi,T ct

i + T comp
j ( )xi,T ct

i +
ù

û
úú

ρxi
V d
Rj

,T comp
l ( )xi,xc ， }[ ]T com

c ( )xc + T comp
c ( )xc （10）

其中，V u
Rj为用户与MECj的上行链路传输速率；V d

Rj为用

户与MECj的下行链路传输速率。

T2 ( )xi,T ct
i ,xc = max{[T com

i ( )xi,T ct
i + T com

j ( )xi,T ct
i +

]T mig
i,j ( )xi,T ct

i + T ct
i − T recv

i ( )xi + T comp
j ( )xi,T ct

i ,T comp
l ( )xi,xc ,

}[ ]T com
c ( )xc + T comp

c ( )xc （11）
T3( )xi,T ct

i ,xc = max{[T com
i ( )xi,T ct

i + T com
j ( )xi,T ct

i +
]T comp

i ( )xi,T ct
i + T comp

j ( )xi,T ct
i + T mig

i,j ( )xi,T ct
i ,T comp

l ( )xi,xc ,
}[ ]T com

c ( )xc + T comp
c ( )xc （12）

2.1.2 训练任务终端能耗

移动用户终端训练任务能耗为：

E locali ( )xi,xc = ( )W − xi − xc PCl （13）
其中，PCl为移动用户终端进行模型训练的单bit能耗。

训练任务传输能耗为：

E trani,j ( )xi,T ct
i ,xc = PRl（xi + xc + ρxi + ρxc) （14）

其中，PRl为移动用户终端发射/接收单bit能耗。

根据移动用户终端训练能耗和训练任务传输能

耗得到终端侧的能耗为：

E l ( )xi,T ct
i ,xc =E locali ( )xi,xc +E trani,j ( )xi,T ct

i ,xc （15）
2.2 目标函数

为了最小化模型训练任务时延，并且同时考虑模

型训练任务时延、终端能耗限制，提出的优化问题可

以表示为：

min
xi,xc
T ( )xi,T ct

i ,xc =
ì

í

î

ï
ï

ï
ï

T1( )xi,T ct
i ,xc ，0 < T ct

i < T rv
i ( )xi

T2 ( )xi,T ct
i ,xc ，T rv

i ( )xi < T ct
i < [ ]T rv

i ( )xi + T pc
i ( )xi

T3( )xi,T ct
i ,xc ，其他

（16）

s.t.

Dm ≥
ì

í

î

ï
ï

ï
ï

T1( )xi,T ct
i ,xc ，0 < T ct

i < T rv
i ( )xi

T2 ( )xi,T ct
i ,xc ，T rv

i ( )xi < T ct
i < [ ]T rv

i ( )xi + T pc
i ( )xi

T3( )xi,T ct
i ,xc ，其他

（17）

El ( )xi,T ct
i ,xc < E thUE （18）
0<xi<W （19）
0<xc<W （20）

0<( )xc + xi <W （21）
其中，Dm为模型训练任务完成期限，E thUE为移动终端能

量阈值。

3 基于麻雀的觅食行为和反捕食行为的启发式

优化算法

麻雀优化算法（Sparrow Search Algorithm，SSA）由

东华大学薛建凯于 2020年提出，是模仿麻雀觅食和反

捕食行为衍生的新型群体智能优化算法。在 SSA体系

中，麻雀族群分为探索者、追随者和警戒者 3类。探索

者能量储备高，负责搜寻食物丰富区域并为追随者提

供指引；追随者紧随探索者觅食；警戒者监控环境，发

现威胁则鸣叫报警，警报超阈值时，探索者引导追随

者转移。该算法逐步优化当前解以搜索最优解，在探

索局部最优解上表现出色。在边缘计算领域，局部搜

索对卸载决策意义重大，该算法思路简洁、易掌握，应

用前景广阔，可快速解决卸载策略问题，在解空间较

小问题上搜索高效。鉴于边缘计算资源有限，高效算

法对卸载决策至关重要，所以，麻雀搜索算法适用于

求解最优任务卸载策略，具体算法如图3所示。

4 仿真与分析

经过上述模型与算法的运算，本文对深度学习模

型在图 1场景下的训练性能进行仿真实验。为简化分

析，设区域 1中MEC1、MEC2、MEC3承担用户服务任

务，区域 2 中 MEC4、MEC5、MEC6 执行相应服务。

MEC1通信与计算性能最佳但能耗最高；MEC2次之，

MEC3相对较低。区域 2的MEC4、MEC5、MEC6的性

能分别与区域 1的MEC1、MEC2、MEC3一致。其中，

MEC1/4 的通信速率为 15 Mbit/s，计算速率为 13.4
Mbit/s；MEC2/5通信速率为 13 Mbit/s，计算速率为 11.6
Mbit/s；MEC3/6通信速率为 12.5 Mbit/s，计算速率为

11.2 Mbit/s。在此次仿真中，设定任务完成的截止时
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端—云最优时延
端—边最优时延
端—边—云最优时延
端—边—云随机卸载时延
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间为 180 s，用户终端的能耗阈值为 1 000 J，连接时间

为15 s，其他参数参考文献［16］及［17］进行设置。

模型训练时延与训练任务量的关系如图 4所示，

各方案目标均为实现最低训练时延。具体而言，端—

云协同方案利用云节点和用户端资源协同优化训练

任务；端—边协同方案利用边节点和用户端资源协同

优化；本文提出的端—边—云协同方案，利用云、边节

点和用户端资源协同优化；端—边—云随机方案则随

机分配任务量给云节点、MEC和用户端进行优化。

由图 4可知，端—云、端—边、端—边—云协同方

案的训练时延随任务量增加而增加，端—边—云随机

方案因随机卸载处理，该规律不明显。在相同任务量

下，本文提出的端—边—云协同方案平均时延最低，

端—边协同方案次之，端—云协同方案再次之，端—

边—云随机方案最高，体现了端—边—云协同的优

势。该方案相比端—云、端—边协同及端—边—云随

机 方 案 ，训 练 时 延 分 别 降 低 45.93%、23.10% 和

57.01%。

模型训练时延随连接时间变化情况如图 5所示，

模型训练任务量为 350 Mbit。从图 5可以看出，在相

同的连接时间下，本文提出的端—边—云协同方案的

模型训练平均时延最低，端—边协同方案次之，然后

是端—云协同方案，端—边—云随机方案最高。与端

—云协同方案、端—边协同方案及端—边—云随机方

案相比，本文提出的端—边—云协同模型训练时延优

化方案分别降低了48.00%、25.24%和54.25%。

模型训练时延对比如图 6所示。待处理的模型训

练任务量在［50，350］（Mbit）内随机取值，连接时间在

［10，15］（s）内随机取值。随着用户数的变化，本文提

出的端—边—云协同方案的模型训练平均时延最低，

端—边协同方案次之，然后是端—云协同方案，端—

边—云随机方案最高。本文提出的端—边—云协同

的模型训练时延优化方案相比端—云协同方案、端—

图3 麻雀优化算法

图4 模型训练时延随模型训练任务量变化情况

Input：
G：最大迭代次数
N：种群数目
Ub：最大任务卸载量
Lb：最小任务卸载量
S:安全阀值
DS：发现者数量
FL：追随者数量
CT：警戒者数量
Output：
Xibest：边节点最优任务卸载量
Xcbest：云节点最优任务卸载量
Fbest：训练模型最优时延
1：调用式（19）~（21）初始化种群位置 ,根据式（17）和式（18）在时
延、能耗限制条件下调用式（9）对应卸载方案的模型训练时延
2：while（t<G）
3：S=rand（1）
4：for i=1：DS
5： 发现者迭代
6：endfor
7：for i=（DS+1）：（DS+FL）
8： 追随者迭代
9：endfor
10：for i=（DS+FL+1）：N
11： 警戒者迭代
12：endfor
13：调用公式（19）~（21）检查迭代位置是否在搜索边界内
14：根据迭代后的任务卸载方案，根据式（17）和式（18）在时延、能
耗限制条件下调用式（9）对应卸载方案的模型训练时延
15：更新种群中的最差和最优任务卸载方案
16：根据适应度对种群排序，选择新的发现者、追随者和警戒者
17：t=t+1
18：endwhile
19：return Xibest，Xcbest ，Fbest

Algorithm：麻雀优化算法

图5 模型训练时延随模型连接时间变化情况
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边协同方案及端—边—云随机方案分别降低了

66.47%、48.83%和80.97%。

5 结束语

为解决移动场景下深度学习模型训练加速问题，

本文先将高速移动场景下模型训练处理流程分为四

大类别。考虑到模型训练时延和终端能耗受限，综合

考量通信、计算和能耗等因素，构建高速移动场景优

化模型以降低处理时延。为提升训练效率，设计端—

边—云协同加速方案。此外，针对受限条件下的最优

解问题，提出基于麻雀觅食与反捕食行为的启发式优

化算法并给出最优卸载策略。仿真结果显示，相同条

件下，本文提出的端—边—云协同模型训练时延优化

方案，相比端—云协同、端—边协同及端—边—云随

机方案，模型训练平均时延分别降低 45%、20%和 50%
以上。

参考文献：

［1］ LECUN Y，BENGIO Y，HINTON G. Deep learning［J］. Nature，2015，
521（7553）：436-444.

［2］ SHARIFANI K，AMINNI M. Machine learning and deep learning：a
review of methods and applications［J］. World Information Technol⁃
ogy and Engineering Journal，2023，10（7）：3897-3904.

［3］ 朱泓睿，元国军，姚成吉，等 .分布式深度学习训练网络综述［J］.
计算机研究与发展，2021，58（1）：98-115.

［4］ REAL E，AGGARWAL A，HUANG Y P，et al. Regularized evolution
for image classifier architecture search［J］. Proceedings of the AAAI
Conference on Artificial Intelligence，2019，33（1）：4780-4789.

［5］ ZOPH B，VASUDEVAN V，SHLENS J，et al. Learning transferable
architectures for scalable image recognition［C］//2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. Salt Lake

City：IEEE，2018：8697-8710.
［6］ BROWN T B，MANN B，RYDER N，et al. Language models are few-

shot learners［C］//Proceedings of the 34th International Conference
on Neural Information Processing System. Vancouver，BC：Curran As⁃
sociates Inc.，2020：1877-1901.

［7］ TONG Z，CAI J H，MEI J，et al. Dynamic energy-saving offloading
strategy guided by lyapunov optimization for IoT devices［J］. IEEE In⁃
ternet of Things Journal，2022，9（20）：19903-19915.

［8］ LI Y，ZHANG X，LEI B，et al. Computation rate maximization for
wireless-powered edge computing with multi-user cooperation［J］.
IEEE Open Journal of the Communications Society，2024，5：965-
981.

［9］ HUYNH L N T，HOSSAIN M D，PHAM Q V，et al. A block-
structured optimization approach for data sensing and computing in
vehicle-assisted edge computing networks［J］. IEEE Sensors Journal，
2024，24（1）：952-961.

［10］ WANG X，JI Y F，ZHANG J W，et al. Joint optimization of latency
and deployment cost over TDM-PON based MEC-enabled cloud ra⁃
dio access networks［J］. IEEE Access，2020，8：681-696.

［11］ VAN HUYNH D，NGUYEN V D，KHOSRAVIRAD S R，et al.
uRLLC edge networks with joint optimal user association，task
offloading and resource allocation：a digital twin approach［J］. IEEE
Transactions on Communications，2022，70（11）：7669-7682.

［12］ LAI X Z，JIANG H L，BHUNIA S，et al. Reducing latency in MEC
networks with short-packet communications［J］. IEEE Transactions
on Vehicular Technology，2024，73（2）：3000-3004.

［13］黄煜 .移动边缘计算中基于CNN模型分割的计算适配和负载均

衡研究［D］.北京：北京邮电大学，2023.
［14］MACH P，BECVAR Z. Mobile edge computing：a survey on architec⁃

ture and computation offloading［J］. IEEE Communications Surveys
& Tutorials，2017，19（3）：1628-1656.

［15］ FENG C F，SUN J D. Mobility-aware task offloading scheme based
on optimal system benefit in multi-access edge computing［C］//Sig⁃
nal and Information Processing，Networking and Computers. Singa⁃
pore：Springer，2023：1025-1033.

［16］ CHEN M H，LIANG B，DONG M. Joint offloading and resource allo⁃
cation for computation and communication in mobile cloud with com⁃
puting access point［C］//IEEE INFOCOM 2017 - IEEE Conference
on Computer Communications. Atlanta：IEEE，2017：1-9.

［17］ PLACHY J，BECVAR Z，STRINATI E C，et al. Dynamic allocation of
computing and communication resources in multi-access edge com⁃
puting for Mobile users［J］. IEEE Transactions on Network and Ser⁃
vice Management，2021，18（2）：2089-2106.

图6 多用户场景下模型训练时延对比
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